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� We model resource adequacy in the PJM Interconnection.

� If plant failures are independent, PJM could retire 11 GW of “at-risk” coal.
� If plant failures are correlated, risks of supply shortages may be high.
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We investigate the resource adequacy requirements of the PJM Interconnection, and the sensitivity of
capacity procurement decisions to the choice of reliability metric used to measure resource adequacy.
Assuming that plants fail independently, we find that PJM's 2010 reserve margin of 20.5% was sufficient
to achieve the stated reliability standard of one loss of load event per ten years, with 0.012 expected loss
of load events per year. PJM could reduce reserve margins to 13% and still achieve adequate levels of
reliability as measured by the 2.4 Loss of Load Hours metric and the 0.001% Unserved Energy metric,
which are used by other U.S. and international systems. A reserve margin of 13–15% would minimize
long-run system costs. Reducing reserve margins from 20.5% to 13% in 2010 would have reduced PJM's
capacity procurement by 11 GW, the same amount of coal capacity that PJM has identified as at high risk
of retirement. We also investigate the risk posed by correlated failures among generators, a risk tradi-
tionally not modeled by system planners. We illustrate that three types of correlated failures may in-
crease outage risks: natural gas supply disruptions, reduced reliability among generators during winter
months, and the simultaneous shutdown of multiple nuclear generators for regulatory reasons.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Over the next decade, significant coal plant retirements are
expected in the United States. The Energy Information Agency
forecasts that 40 GW of coal capacity will retire between 2014 and
2020 (EIA, 2014). These retirements are due to a combination of
factors. Many coal plants are near the end of their expected life-
span. Many small and outdated coal plants are finding it cost
prohibitive to make the retrofits necessary to comply with emis-
sion regulations. Low natural gas prices have put downward
pressure on revenues from wholesale electricity prices.

These retirements pose a new challenge to system operators,
who are mandated to meet resource adequacy requirements. To
meet these requirements, systems procure generation capacity
that is rarely used but is needed in extreme circumstances. This
ken).
capacity, typically natural gas combustion turbines, has low up-
front capital costs but high operating costs. In the traditional
regulated utility model, these generators are compensated
through rate-of-return ratemaking, even if they produce no power.
The restructuring of 20 U.S. states in the late 1990s and early
2000s led the industry to recognize the so-called “missing money
problem”, whereby market designs would not support sufficient
generation investment (Joskow, 2006, 2008; Spees et al., 2013).
Today, many restructured markets use capacity markets to com-
pensate generators for the capacity they provide. Since 2007, PJM
has procured capacity through its centralized capacity market.
Capacity market billings were $8 billion in both the 2009/2010 and
2010/2011 auctions. In 2010, capacity costs were roughly 18% of
total 2010 billings (PJM, 2011a).

Resource adequacy modeling underpins the planning decisions
made in today's electricity systems. In both traditionally regulated
states with Integrated Resource Planning processes and re-
structured states with ISO-administered capacity markets, re-
source adequacy models play a major role in determining the
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amount of capacity that is built. These models consider the relia-
bility of existing generators and forecasts of load. Both generator
outages and load forecasts are highly uncertain, creating the risk
that inaccurate modeling may lead to an over- or under-procure-
ment of capacity. Over-procuring capacity will increase costs for
ratepayers; under-procuring capacity will create outage risks
above reliability targets.

The traditional metric of resource adequacy is the number of
loss of load events (LOLE) per ten years. Most U.S. systems, in-
cluding the PJM Interconnection, procure enough capacity to meet
a LOLE standard of one expected event per ten years, or 0.1 events
per year (0.1 LOLE standard) (PJM, 2013). The 0.1 LOLE standard
dates back to the 1950s, although its origins are unknown (EISPC,
2013; Pfeifenberger et al., 2013). Here we follow the standard
definition of an outage “event” as an outage lasting one or more
consecutive hours. The LOLE metric is problematic, because it
considers neither the duration of an outage nor the magnitude of
load shed during an outage.

Instead of the LOLE metric, some systems have adopted other
standards. The Southwest Power Pool (SPP) uses the metric of 24
expected loss of load hours (LOLH) per ten years, or 2.4 h per year
(2.4 LOLH standard) (EISPC, 2013). The Scandinavian system uses
the metric of expected unserved energy (UE) totaling 0.001% of
total load served (0.001% UE standard). Australia's National Energy
Market (NEM) and South West Interconnected System (SWIS) have
adopted a 0.002% UE standard (Pfeifenberger et al., 2013). The
North American Electric Reliability Corporation has recommended
system operators adopt UE standards, as they explicitly consider
the magnitude of outages (NERC, 2010). All three metrics consider
only the risk of generator outages, and exclude other risks such as
transmission or distributions outages.

Although a significant body of literature exists on the electric
system reliability, resource adequacy risks have received less at-
tention. As part of a study into electricity reliability more broadly,
(Hines et al., 2009) find that supply shortages over the period
1984–2006 were responsible only for 2.3% of U.S. outage events.
The methods used by system planners today are very similar to
those outlined by Billinton in the 1970s (Billinton et al., 1973).
More recently, system planners have begun to analyze the eco-
nomically optimal reserve margin, or the reserve margin that
minimizes total system costs and outage costs (Pfeifenberger et al.,
2013; Newell et al., 2014).

In this paper, we analyze the resource adequacy requirements
of the PJM Interconnection. We evaluate the sensitivity of re-
quirements to the choice of metric used to measure resource
adequacy: LOLE, LOLH, and Unserved Energy. Because the choice of
reliability metric is somewhat arbitrary, it would behoove system
operators in PJM and elsewhere to understand how capacity pro-
curements may change under different resource adequacy metrics.
We also evaluate the reserve margin that results in the lowest
long-run system costs, known as the economically optimal reserve
margin. We develop a robust statistical model of resource ade-
quacy in PJM for the year 2010. The model consists of a prob-
abilistic forecast of hourly load and a probabilistic forecast of
generator outages. The load model explicitly considers three major
drivers of uncertainty: uncertain load growth, natural temperature
variability, and uncertainty in the underlying model/process. The
load model uses ten years of load data and sixty years of tem-
perature data from Pittsburgh International Airport and Reagan
National Airport. We combine the load and outage models into a
probabilistic forecast of supply shortages. The model is structurally
similar to the model used by PJM to forecast load. The intent of this
model is not to improve upon PJM's load forecasting methods.
Rather, the intent is to allow us to explore the sensitivity of PJM's
load procurement decisions to factors including the choice of re-
liability metric, how likely they wish to meet the target, and risk of
correlated failures among generators.
In 2010, PJM calculated a 15.5% reserve margin was needed to

achieve the 0.1 LOLE standard. PJM procured additional capacity,
making the realized reserve margin 20.5%. We find that PJM’s
15.5% reserve margin target met the 0.1 LOLE standard. By pro-
curing additional capacity such that the actual reserve margin was
20.5%, PJM's realized LOLE was 0.012 events per year, and PJM met
the 0.1 LOLE standard with 90% confidence. Switching to the
2.4 LOLH or 0.001% UE standard would allow PJM to reduce re-
serve margins to 13% and maintain current risk preferences. This
represents an 11 GW reduction in capacity from a 20.5% reserve
margin. PJM anticipates 11 GW of coal capacity, or �7% of total
capacity, is “at high risk” of retirement (PJM, 2011b). We find that
this 11 GW of high risk coal capacity could retire if PJM were to
switch to the LOLH or UE metric. We also find that the econom-
ically optimal reserve margin in PJM was 13–15%, which would
minimize long-run total system costs, including costs for energy,
capacity, reserve shortages, and outages.

An emerging source of risk in power systems is the risk of
multiple generators failing simultaneously due to an external
forcing event. Traditional system planning assumes plant fail in-
dependently of one another. The risk of correlated generator fail-
ures was exposed in January 2014, when extreme cold tempera-
tures in the Northeast and Mid-Atlantic forced many generators
offline simultaneously due to fuel shortages and mechanical fail-
ures and threatened reliability (PJM, 2014c). PJM and other sys-
tems are working to reduce the risks posed by winter fuel supply
disruptions. However, other types of correlated failure risks exist,
including extreme weather and natural disasters. Unfortunately,
quantifying the likelihood and magnitude of such correlated fail-
ures is difficult due to their infrequency.

We illustrate the potential risks posed by three types of cor-
related failures: (1) natural gas supply disruptions that force all gas
generators offline, (2) increased outage rates among all plants
during winter months due to mechanical and fuel supply issues,
and (3) the forced shutdown of all PJM nuclear generators by
regulators, such as happened in Japan post-Fukushima. We do not
attempt to quantify how likely such correlated failures may be.
Rather, we vary the likelihood of correlated failures occurring and
see the effect on reliability. We find that such low probability but
high impact correlated failures may have a large effect on relia-
bility, and may cause PJM and other system operators to overstate
reliability.

We also find that the distribution of outage size is ‘fat tailed’,
and the largest 10% of outages account for half of total load shed.
Therefore, system operators should recognize that supply shorta-
ges are more rare, but more disruptive than implied by reliability
metrics.
2. Methods

We develop a probabilistic forecast of supply shortages in PJM
for 2010. This forecast consists of two separate analyses: a prob-
abilistic simulation of hourly load, and a probabilistic simulation of
capacity available at each hour. These analyses are described in
detail below. We then use Monte Carlo analysis to find the prob-
ability that load exceeds supply for each hour of the year. We
analyze three reliability metrics: LOLE, LOLH, and UE, and their
sensitivity to PJM's reserve margin. We perform several sensitivity
analyses, and compare the results of our simulation to PJM’s
modeling of capacity needs.

2.1. Load forecast

We use historic load and temperature data to forecast load in
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PJM. Load forecasts have three sources of uncertainty: uncertainty
in load growth, natural temperature variability, and uncertainty in
the underlying model/process. We consider each separately to
robustly forecast load.

A large literature exists on forecasting load. Techniques com-
monly used include regression analysis, time-series analysis, and
neural networks (PJM, 2013; Hagan and Behr, 1987; Hippert et al.,
2001). The model used by PJM to set reserve margin targets is a
probabilistic model derived from Billinton (PJM, 2003; Billinton
et al., 1973). The model is not regression based, but uses heuristics
that PJM has developed over time. PJM uses a separate regression
model to forecast long-term load growth (PJM Interconnection,
2013).

We use regression analysis to forecast hourly load in PJM. The
regression model shares many features in common with the re-
gression model PJM uses to forecast long-term load growth. Re-
gression analysis is useful for estimating the expected value of
load at each time period. However, our focus is extreme events, i.e.
high-load hours in which outages are more likely. To account for
these extreme events, we bootstrap the model’s residuals to si-
mulate uncertainty in load at each time period.

We forecast hourly load in 2010 using hourly data from the
previous ten years. Using ten years of load data allows us to de-
velop a robust relationship between load and other explanatory
variables. Hourly load data are from PJM (2014a). Hourly tem-
perature and associated weather data is from the National Oceanic
and Atmospheric Association (NOAA) for the Reagan National
Airport and Pittsburgh International Airport weather stations
(NOAA, 2014a). These weather stations were chosen as they have
reliable temperature data available dating back to the 1940s,
which is used to forecast 2010 temperatures. Data on the minutes
of daylight for each day is from (US Naval Observatory, 2012) for
Washington DC.

Since its inception, the PJM territory has undergone several
expansions (Table 1). To account for these expansions, we forecast
load separately for “PJM Classic” (the PJM region prior to any ex-
pansions) and each expansion zone. We then combine the fore-
casts into an overall PJM load forecast.

For each zone, the analysis has the following seven steps:

2.1.1. Step 1: regress long-term trend
We first identify and remove the ten year, long-term trend in

load growth. By removing the long-term trend, we are able to
explicitly incorporate PJM's forecast of future load growth (step 6).
To remove the long-term trend, we use a non-parametric, additive
model and regress load against the hour index, as shown in Eq.
(1).1 The hour index starts at 1 for the first hour of 2000, and ends
at the last hour of 2009. Using an additive model allows us to
account for nonlinearities in load growth, and regressing the
logarithm of load allows us to account for higher variability at
high-load hours. The model’s residuals are stationary. We use
these residuals in step 2 to control for additional explanatory
variables that can cause load to vary throughout the year, includ-
ing temperature and holidays. Fig. 1 shows the long-term trend of
Table 1
PJM Expansions, 1993–2010 (PJM, 2014a).

Expansion Date

Rockland Energy March 2002
Allegheny Energy April 2002
Exelon – Commonwealth Edison May 2004
AEP October 2004
Dayton Power & Light October 2004
Duquesne Light Co January 2005
Dominion Virginia May 2005
“PJM Classic”, the original PJM footprint, and the model’s sta-
tionary residuals.

load f tlog 1t tβ( ) = ( ) + ( )

2.1.2. Step 2: regress stationary time series
The second step is to regress βt, the stationary residuals from

step 1, on explanatory variables, including calendar events such as
major holidays and weekends, temperature, and length of daylight
hours. This is shown in Eq. (2). For hour of the day and length of
daylight hours, we include interaction terms with the month of
the year to account for changes in electric load patterns
throughout the year. Table A.2 lists all explanatory variables. We
use model’s residuals, tγ to account for uncertainty in the under-
lying model/process (see step 7).
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We use hourly weather data to calculate the Tadj,avgD, the
average daily temperature adjusted for wind chill index (WCI) and
temperature humidity index (THI) (Table 3, Eqs. (3)–(6)). For each
region, we use data for either Reagan National Airport (DCA) or
Pittsburgh International Airport (PIT) (NOAA, 2014a), depending
on which is closest (Table 2).

Because the relationship between temperature and load is
highly nonlinear (Fig. 2), we used a nonlinear, additive term to
account for temperature in the regression. The remaining regres-
sion terms are linear. We found that using a non-linear model of
temperature was more accurate than a linear model of tempera-
ture dependence that included both linear and quadratic terms
(see Appendix A). As shown in Figs. A.2–A.4, the linear model
significantly over-predicts load during high-temperature days.
This is because the linear model predicts accelerating growth in
load with increasing temperatures. However, load growth actually
begins to slow once an average daily temperature of �27 °C are
reached (Fig. 2). This is likely because air conditioning loads start
to saturate once temperatures are high enough. This over-predic-
tion of peak load hours causes the linear model to overstate LOLE
(Fig. A.5). Due to this bias in the linear model, we use a non-linear
model in our main analysis.

2.1.3. Step 3: bootstrap residuals of the stationary model
To account for uncertainty in the underlying process/model, we

bootstrap the residuals of the stationary time series model, tγ , Eq.
(2). We bootstrap residuals by month, in 24-h blocks. Boot-
strapping by month allows us to account for heteroskedasticity in
the residuals (Fig. A.6); using 24-h blocks allows us to account for
time dependence in the residuals (Fig. A.7). The resulting boot-
strapped residuals are used in step 7.

2.1.4. Step 4: forecast temperatures
Because the next year's temperatures are uncertain, we develop

temperature forecasts for 2010 based on historic NOAA weather
data dating back to 1949 for DCA and PIT airports (NOAA, 2014a)
(years 1966–1972 were excluded due to missing data). We use
hourly temperature, relative humidity, and wind speed data to
calculate the average adjusted daily temperature (Tadj,avgD) for
DCA and PIT each day (Table 3, Eqs. (3)–(6)). We bootstrap days
from this 60 year dataset, by month, in 10-day blocks. Boot-
strapping by month allows us to account for the seasonal
1 The non-parametric function f (⋅) is estimated using R software and gam
command from “gam” package in R with default settings where splines are used for
the non-parametric estimation (see (Hastie, 2013)).



Fig. 1. (A) Fitted long-term trend and (B) stationary hourly residuals, βt, for PJM Classic.

Table 2
Weather station used for each zone's regression.

Region Weather station used

PJM Classic DCA
Rockland Energy DCA
Allegheny Energy DCA
Exelon – Commonwealth Edison PIT
AEP PIT
Dayton Power & Light PIT
Duquesne Light Co PIT
Dominion Virginia DCA

Fig. 2. Relationship between hourly load in PJM Classic and adjusted average daily
temperature at Reagan National Airport (DCA), 2000–2009. Because the relation-
ship is highly nonlinear, we use a non-linear, additive model to account for tem-
perature dependence.

Table 3
Temperature calculations.
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c2¼2.04091523
c3¼10.14333127
c4¼�0.22475541
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i ¼hour of the day
D¼day of the year
Ti ¼hourly temperature [°F]
Ri ¼hourly relative humidity [percentage value between 0 and 100]
Vi ¼hourly wind speed [mph]
THIi ¼temperature humidity index [°F]
WCIi ¼wind chill index [°F]
Tadji ¼hourly adjusted temperature
Tadj,avgD¼daily average adjusted temperature [°F]
WCI index equation from (NOAA, 2013); THI index equation based on (NOAA,
2014b).

Although conversion equations are in English units, the remainder of our analysis
uses Celsius.
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variations in temperature; using 10-day blocks allows us to ac-
count for time dependence in weather patterns that can last for
several days (Fig. A.8). Using 60 years of temperature data allows
us to robustly account for extreme temperatures that may occur.
We do not observe a secular trend in the NOAA temperature data.
By using historic data, we do not account for the possibility of
future climate-induced changes in temperature levels or volatility.
2.1.5. Step 5: forecast the stationary time series
Once we have a model of the underlying stationary process

(step 2), we use the model to predict the next year’s stationary
time series. This stationary time series excludes the effects of load
growth. In this prediction, we use the temperature forecast de-
veloped in step 4.
2.1.6. Step 6: forecast load growth
Our forecast of growth in average load is based on PJM's 2009

forecast for 2010 load growth. We adjust the forecast to account
for the historic accuracy of the Energy Information Agency's (EIA)
load forecasts in the Annual Energy Outlook; insufficient data on
PJM forecast accuracy is publically available. Between 1999 and
2008, EIA load growth forecasts had an average bias of �0.3% and



Fig. 3. PJM's 2010 load growth forecast, with and without the historical accuracy
factor, and actual load growth that occurred.

Fig. 4. Forced outages 2-stage discrete Markov process.
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standard deviation of 1.9% (EIA, 2008). We assume forecast errors
are normally distributed, and develop a distribution of possible
load growth rates (Fig. 3). We then sample growth rates from the
resulting distribution. We assume load growth is linear through-
out the year.

2.1.7. Step 7: forecast hourly load
Finally, we sum the three components of our load forecast

model: forecast load growth (step 6), the forecast stationary time
series (step 5), and the residuals of the stationary time series re-
gression (step 3). This allows us to separately account for the three
sources of uncertainty: uncertain load growth, natural tempera-
ture variability, and uncertainty in the underlying model/process.
As all three components are probabilistic, we repeat the process
many times to measure the uncertainty associated with each. The
result is a probabilistic hourly forecast of load.

Once we have developed probabilistic hourly load forecasts for
each zone, we sum these forecasts to find the total load forecast
for PJM. We repeat the entire process 5000 times to develop a
probabilistic forecast of hourly PJM load in 2010.

2.2. Supply forecast

We next forecast the total capacity available at each hour. Total
available capacity is the summed capacity of all online dispatch-
able plants, demand response, import capacity, and firm wind
capacity. We use data from the 2010 PJM Form EIA-411 to identify
each dispatchable plant's summer and winter capacity, as cleared
in the capacity auction (PJM, 2010b). We therefore assume the
system operator has perfect information as to what generators will
be available for the forecast year. We simulate the online status of
each PJM generator, taking into consideration forced outages,
planned outages, and maintenance outages. We simulate total
capacity available for each of the 8760 h of the year, and repeat the
simulation 5000 times to get a distribution of capacity available at
each hour. We do not model other supply-side actions PJM can
take to mitigate outage risks, such as voltage reductions.

We first schedule planned outages and maintenance outages
for all plants. These outages are scheduled such that the likelihood
of a supply shortage is minimized. As such, the majority of outages
are scheduled during the spring and fall. NERC's Generating
Availability Data System (GADS) provides data on the average
number of planned outage hours and maintenance outage hours
for plants, aggregated by plant type and size (NERC, 2014). We find
that these outages can be scheduled with minimal effect on LOLE.
We schedule each plant’s planned outages and maintenance
outages with the following process:
1. Find the total planned outage hours (POH) and forced outage
hours (FOH) for each plant.

2. Divide plants into two categories: peaking plants and non-
peaking plants. We identify peaking generators as natural gas
combustion turbines smaller than 100 MW and oil generators.

3. Schedule peaking outages such that the total offline capacity is
roughly equal for all hours of the year. Each plant is assumed to
undergo one outage, of duration POHþFOH. �1.7 GW of peak-
ing capacity is scheduled offline each hour.

4. Schedule non-peaking outages to occur during the spring
(March–May) and fall (September–November). Each plant is
assumed to undergo one outage, of duration POHþFOH.
�35 GW of non-peaking capacity is scheduled offline each
spring and fall hour.

By scheduling outages in this manner, we minimize the like-
lihood of a supply shortage. We also mimic the actual scheduling
of outages in PJM, in which baseload coal and combined cycle
plants are primarily offline during the spring and fall, and com-
bustion turbines are offline throughout the year (Fig. A.1).

We next model forced outages. Forced outages are caused by
unforeseen technical problems, occur randomly throughout the
year, and have an uncertain duration. We model plant forced
outages as a two-stage discrete Markov chain (Billinton et al.,
1973). Fig. 4 illustrates this process. At each time period t, if the
plant is online there is probability P1,1 that it remains on at period
tþ1 and probability P1,0 that is fails. If the plant is offline, it re-
mains off with probability P0,0 and is repaired with probability P0,1.
Accounting for the duration of outages increases the uncertainty of
how much capacity is available at each hour. We simulate each
plant's forced outages over one year (8760 h), then sum the total
online capacity of all PJM plants. We assume that each plant's
transition probabilities are constant throughout the year.

GADS provides data on the mean number of forced outages,
and PJM provides data on plant equivalent demand forced outage
rates (EFORd) (PJM, 2014b). We use these data to calculate the
transition probabilities with Eq. (7) through (11) (Table 4). EFORd
is defined as “the probability that a generating unit will fail, either
partially or totally, to perform when it is needed to operate” (PJM,
2011a). All data are aggregated by plant type and size.

We estimate the available DR capacity and net import capacity
based on the results of the capacity auctions (PJM, 2009) (Table 5).
Each auction covers the period of June 1 of the first year to May 31
of the second year. We derate DR capacity by 5%, as is PJM's
practice to account for DR that does not respond to PJM requests
(PJM, 2010a). Firm wind capacity is assumed by PJM to be 13% of
nameplate capacity (PJM, 2009); for both 2009 and 2010, firm
wind capacity was 40 MW.

2.3. Outage forecast

We assume here that an outage occurs when total load exceeds
total available capacity. Using the procedures outlined above, we
develop yearly forecasts of hourly load and available capacity. We
then subtract the hourly load forecast from the hourly forecast of
available capacity to identify if an outage has occurred, Eq. (12)



Table 4
Forced outage equations.

MOD
EFORd

NFO
8760

7= *
( )

P
MOD

1
80,1 = ( )

P P1 90,0 0,1= − ( )

P
NFO
8760 101,0 = ( )

P P1 111,1 1,0= − ( )

MOD¼mean outage duration
NFO¼Annual number of forced outages
EFORd¼Equivalent forced outage rate

Table 5
DR capacity and net import capacity, by capacity auction (PJM, 2009).

Capacity auction DR capacity (MW) Net import capacity (MW)

2009/2010 7290 þ320
2010/2011 9050 �400

Table 6
Outage equations.

⎧
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AvailableCapacity Load
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13i
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EUE Load AvailableCapacity i Outage, 1
14i
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I¼set of 8760 annual hours

AvailableCapacity i ¼summed capacity of all online PJM generators, DR, net imports, and reliable wind

power at hour i

Load i¼ total PJM load at hour i

Outage i¼binary variable indicating if an outage occurred at hour i
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(Table 6). We calculate UE and LOLH with Eqs. (13) and (14) to find
the number of outages per ten simulated years (Table 6). LOLE is
calculated in a similar manner as LOLH, but all consecutive outage
hours are counted as one outage event. We repeat the process
10,000 times to develop distributions of LOLE, UE, and LOLH. We
repeat the entire process, varying the amount of installed capacity
in order to see how reliability metrics change versus reserve
margin. To vary capacity, we add or subtract a constant amount
from each hour's available capacity.
Our modeling does not consider the effect of transmission

constraints on resource adequacy. In the 2009/2010 auction, PJM
found inflows were constrained to the Eastern Mid-Atlantic Area
Council (EMAAC) and southwestern MAAC. Additional capacity
was procured in these regions, resulting in higher capacity prices
in these regions (PJM, 2008). In the 2010/2011 auction, PJM found
no transmission constraints, and capacity prices were equal
throughout the interconnection. We also ignore any operating or
synchronous reserve requirements.

PJM's Base Residual Auction is held in May, three years prior to
the delivery year. By conducting the auction three years in ad-
vance, PJM seeks to reduce uncertainty for market participants.
Each year after the Base Residual Auction, PJM conducts Incre-
mental Auctions to account for changes in market conditions. Our
analysis simulates the last Incremental Auction, one year in ad-
vance of the delivery date. As such, we use data from 2009 and
earlier to develop the 2010 forecast. In principle, our methods
could be used to simulate the Base Residual Auction, but would
need to be adjusted to account for the increased uncertainty in
available capacity and load three years in advance.

2.4. Economically optimal reserve margin

We analyze the level of capacity procurement that minimizes
long-run total system costs. We use PJM generator data and load
data from 2010 in this analysis. We consider costs from four
sources: costs on the capacity market, energy market, outage
costs, and reserve shortage costs. In 2010, PJM's reserve margin
(installed capacity) was 20.5%. We quantify total system costs for
reserve margins of 10–20%. These methods are similar to those
used by other studies of the economically optimal reserve margin
(Newell et al., 2014; Pfeifenberger et al., 2013).

The consequences of reducing PJM's reserve margin depend
greatly on the type of capacity that is no longer procured (retired).
Procuring less capacity would force the retirement of plants with
the highest capacity market bids. However, individual capacity
market bids are not publically available, and therefore we cannot
know which plants would retire. If baseload capacity retired, costs
on the energy market increase significantly. If peaking capacity
retired, energy market costs would be unchanged.

We assume procuring less capacity would force the retirement
of coal plants that are expensive to operate. PJM has identified
11 GW of coal capacity “at high risk” of retirement, and an addi-
tional 14 GW of coal capacity “at some risk” of retirement (PJM,
2011b). These plants are smaller than 400 MW and older than 40
years. However, it is possible that lower reserve margins might
force other types of capacity to retire. We therefore bound our
analysis with two scenarios: only baseload plants retire, and only
peaking plants retire.

We evaluate four types of system costs: costs on the capacity
market, energy market, outage costs, and reserve shortage costs.
Total system costs are approximated as the sum of these four cost
categories. We exclude several other types of costs, including costs
on regulation markets, emergency import costs, and demand re-
sponse costs. Although these categories are small relative to the
costs considered here (Newell et al., 2014), future work could
consider these and other system costs.

We quantify energy market costs with a reduced form supply
curve dispatch model. Energy market costs are calculated as the
sum of generator fuel and variable operation and maintenance
costs throughout the year. We assume generators are dispatched
each hour in order of least cost. We do not capture constraints that
can lead to out-of-merit-order dispatch, such as transmission
constraints and generator ramping constraints. We use 2010
hourly load data and generator capacity data from PJM (2010a,



Fig. 5. Energy market supply curves for baseline 20.5% reserve margin, and 15.5%
reserve margin with different types of capacity retired.
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Correlated outage equations.
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Poutage,FS¼Probability that a generator goes offline if a fuel shortage occurs
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2010b) to estimate energy costs. We derate each plant’s capacity
by the forced outage rate (PJM, 2011a). Delivered fuel cost data is
from EIA (2014b) and Lazard (2010). Variable operation and
maintenance costs are from Lazard (2010). Plant heat rates are
from eGRID (EPA, 2014). As shown in Fig. 5, the baseline scenario
retires the most expensive coal plants to operate. For the sensi-
tivity analysis, we retire plants with the lowest operating costs
(baseload) and highest operating costs (peakers).

We estimate long run capacity costs as the total cost of building
and operating a new natural gas combustion turbine (NGCT) plant,
net expected revenues on the energy market (net CONE). We ap-
proximate this quantity, known as the net cost of new entry (net
CONE), as $100/kW-yr based on findings of existing studies (Spees
et al., 2011).

We assume a reserve shortage occurs in any hour of the year H
when hourly load is high enough to force PJM to draw from their
day ahead schedule reserves (DASR) (Eq. (15)). Shortages are va-
lued at PJM's current price cap of $2,700/MWh (PJM, 2014e).
Hourly 2010 DASR data is from PJM (2014f).

ReserveShortage

Load

totalCapacity ReserveRequirement

h H

min 0,

, 15

h

h

h

=

(

− ( − ))
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The cost of an outage is the total unserved energy (UE), mul-
tiplied by the value of lost load (VoLL) of consumers. We multiply
the simulated UE values by an assumed VoLL to approximate the
total cost of outages. We assume a VoLL of $15/kWh, based on the
estimated costs of a one hour interruption for medium/large
commercial and industrial consumers (Sullivan, 2009).

2.5. Correlated outages

Next, we evaluate the risk posed by low probability but high
impact events that can force the correlated failure of multiple
generators simultaneously. Traditional resource adequacy plan-
ning does not account for such risks. We do not attempt to
quantify the probability of such correlated failures occurring. Ra-
ther, we vary the likelihood of correlated failures and test how
resource adequacy metrics change.

First we test how LOLE, LOLH, and UE would vary if all 50 GWof
PJM natural gas generators were subject to the risk of a natural gas
supply disruption. We test the risk posed by supply disruptions
that could occur at any point during the year, and we test the risk
for supply disruptions that only occur during winter months
(December–February). We model the hourly risk of a fuel supply
shortage as PFS. We then evaluate each winter hour if a supply
shortage occurs with Eq. (16) (Table 7). We assume the risk of a
supply shortage is uniform throughout the winter. If a supply
shortage occurs, the probability of each individual generator fail-
ing is Poutage,FS, Eq. (17) (Table 7); if no supply shortage occurs, we
adjust the probability of an independent failure occurring such
that the overall risk of failure is equal to the case in which all
outages are independent, Eq. (10). We therefore do not change the
probability of an outage occurring. Rather, we adjust the fraction
of outages due to a supply shortage versus an independent failure.
Because data on the frequency and severity of correlated outages is
not publically available, we test the sensitivity to each parameter.
First, we vary the hourly probability of a supply shortage such that
the likelihood of a disruption occurring varies from twice per year/
winter to once every 5 years/winters, assuming that all gas gen-
erators fail if a shortage occurs (Poutage,FS¼1).

Second, we test how seasonal variations in plant reliability may
affect resource adequacy. As evidenced by the 2014 Polar Vortex,
extreme cold can cause outages at all types of generators. Coal, gas,
and nuclear plants were all offline during the Polar Vortex due to
reasons including mechanical failures, frozen pipes, frozen coal
piles, and gas supply disruptions (PJM, 2014c). We test how system
reliability change would change if plant EFORd were modeled as
sensitive to ambient temperature. We model all plants as 50% less
likely than baseline to be forced offline during the warmest
6 months (April–September) and 50% more likely to be forced
offline in the coolest 6 months (October–March).

Third, we test the risk posed by all PJM nuclear generators
shutting down simultaneously, as occurred in Japan due to reg-
ulatory intervention after the Fukushima Daiichi disaster. We as-
sume the risk of such a correlated failures is constant throughout
the year, and vary the likelihood of such an event occurring from
once every 10 years to once every 50 years. We assume that such a
regulatory intervention would force generators to be offline for an
average duration of six months (P01¼1/4330, P00¼1�1/4330).
3. Results

Table A.1 shows accuracy statistics of the load model, both in
the training data for 2000–2009 and test data when predicting
2010 load. The test error is the model’s prediction error when
given actual 2010 temperatures and load growth; it therefore



Fig. 6. 2010 LOLE versus reserve margin. Also shown are results from PJM's 2013
resource adequacy modeling (recreated from (PJM, 2010a)).

Fig. 7. 2010 unserved energy versus reserve margin.

Table 8
Sensitivity of the target reserve margin and installed capacity to different reliability
metrics and risk tolerances. PJM's target 2010 reserve margin was 15.5% (158 GW),
and actual 2010 reserve margin was 20.5% (165 GW).

Metric Optimal reserve margin [%] (installed capacity [GW])
Risk
neutral

90%
Confidence

95%
Confidence

99% Confidence

0.1 LOLE 15.5% (158) 20.5% (165) 22% (168) 425% (4170)
2.4 LOLH 10% (151) 13% (154) 14% (156) 15% (158)
0.001% UE 10% (151) 13% (154) 14% (156) 16% (159)
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ignores uncertainty in temperature and load growth. Normalized
root-mean-square error (NRMSE) controls for the size of the PJM
region, Eq. (19). Table A.2 shows detailed regression results for the
“PJM Classic” region.

NRMSE
RMSE

load load 19max min
=

− ( )

The model's accuracy could certainly be improved further. In-
cluding weather data from more points within PJM would likely
have the greatest effect on model accuracy. Our model uses
weather data from Reagan National and Pittsburgh International
Airports; PJM's long-term load forecasting model uses tempera-
ture data from 24 airports (PJM, 2013).

3.1. Reliability metrics

Fig. 6 shows simulated 2010 LOLE for reserve margins of 10–
25%. The expected value of our 2010 simulation closely matches
that of PJM's 2013 simulation (data on PJM's 2010 simulation is not
available, but the results of the simulation have changed very little
over time). In 2010, PJM found a 15.5% reserve margin was ne-
cessary to meet the 0.1 LOLE standard (PJM, 2010a); we find a
15.5% reserve margin would have resulted in an LOLE of 0.8 events
per year. Our simulation's 90% confidence interval ranges from
zero to three events per ten years at 15.5% reserve margin.

The actual 2010 reserve margin was 20.5% (164 GW), as PJM
procured more capacity than was needed on the capacity market
(PJM, 2008)2. We find that a 20.5% reserve margin corresponds to
an expected LOLE of 0.012 events per year, and achieves the
0.1 LOLE standard with 90% confidence.

Fig. 7 shows simulated 2010 unserved energy versus reserve
margin. At a 15.5% reserve margin, the expected UE is 1.1 GWh per
year, or 0.00015% of actual 2010 load. The 90% confidence interval
ranges from 0 GWh per year to 6.1 GWh per year (0.0000–0.0008%
of load unserved, respectively). UE becomes increasingly uncertain
at lower reserve margins. Expected LOLH is 3.4, with a 90% con-
fidence range of 0–14.

We find that PJM's target 2010 reserve margin of 15.5% was
sufficient to meet the 0.1 LOLE standard. Switching to either the
2.4 LOLH standard or the 0.001% UE standard could reduce reserve
margins to 10% (Table 8). Procuring additional capacity such that
the realized reserve margin was 20.5% implies PJM wishes to meet
the 0.1 LOLE standard with 90% confidence. PJM could meet the
2 Generation offeredþfixed resource requirement (FRR) commitments – gen-
eration offered but not accepted.
2.4 LOLH standard and 0.001% UE standard with 90% confidence at
reserve margins of 13%. Requiring that the reliability metric be met
with 95% or 99% confidence would further increase reserve margin
requirements.

3.2. Economically optimal reserve margin

We estimate that PJM’s long run, economically optimal reserve
margin is 13–15%. System costs change by less than $100 million
within this range, or less than 1% of the total $28 billion in esti-
mated system costs. As shown in Fig. 8, costs associated with
outages and reserve shortages become more significant as reserve
margins fall below 14%. Above 14%, capacity market costs increase
significantly. Because this range includes the 13% targets needed to
meet the 2.4 LOLH standard and 0.001% UE standard with 90%
confidence, we conclude that either of these standards could be
Fig. 8. Long run system costs. Capacity market costs above a $15 billion/year
baseline.



Fig. 9. Long run system costs, for different assumptions about what type of capa-
city is retired.

Fig. 10. Distribution of the size of simulated outages, in terms of unserved energy,
versus a fitted normal distribution. Assumed reserve margin is 15.5%.

Table 9
Outage summary statistics, 15.5% reserve margin.

Expected
value

90% Confidence
interval

Maximum

Outage duration [h] 4 1–9 10
Largest magnitude
[GW]

3 0–10 17

Total load shed [GWh] 13 0–54 110

Fig. 11. Sensitivity of unserved energy to natural gas supply shortages that can
occur at any point during the year, and force all PJM gas generators offline. Eval-
uated at 15.5% IRM.
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considered efficient. However, maintaining PJM's realized 2010
reserve margin of 20.5% would increase annual system costs by
$600 million annually over a $15 billion per year baseline in the
long run.

System costs are very sensitive to the type of capacity that is
retired when PJM procures less capacity. As shown in Fig. 9, if the
retired capacity is baseload plants, total system costs increase
significantly as reserve margins decrease. If retired capacity are
either expensive coal plants or peaker plants, system costs are
minimized for reserve margins of 13–15%.

We find that outage costs are small in the long run, as the
expected unserved energy is small. We therefore conclude that the
economically optimal reserve margin is insensitive to VoLL, here
assumed to be $15/kWh.

Our results are similar to those of other, similar studies (Newell
et al., 2014; Pfeifenberger et al., 2013). Newell et al. found that the
economically optimal reserve margin in the ERCOT system is
10.2%, lower than the reserve margin needed to meet the 0.1 LOLE
standard. Similar to our results, the study found that system costs
do not vary significantly for reserve margins of 8–14% but does
note that there is more uncertainty in system costs at lower re-
serve margins. Consistent with these studies, we find that the
economically optimal reserve margin in PJM is lower than the
reserve margin needed to meet the 0.1 LOLE standard. Our results
for PJM add to a growing body of literature suggesting that for a
variety of systems the 0.1 LOLE may result in higher capacity
procurements than are economically optimal in the long run.

3.3. Distribution of outage size

We find that there is extreme variation in the amount of load
shed during outages. As shown in Fig. 10, the distribution of un-
served energy resulting from an outage is extremely fat tailed. At a
15.5% reserve margin, the mean outage is 15 GWh, but outages
range from 0 GWh to 110 GWh (Table 9). The top 10% largest
outages account for half of total unserved energy, and the top 1% of
outages account for 10% of total unserved energy. The risk of a very
large outage becomes more pronounced at lower reserve margins.

3.4. Model form uncertainty

Load in PJM is highly sensitive to temperature, and accurately
modeling this relationship is important for accurately calculating
LOLE. We used a nonparametric, additive model to account for the
relationship between load and temperature. We also tested a
linear model to account for the relationship. The linear model
divided days into heating degree days (HDD) and cooling degree
days (CDD). Details can be found in Appendix A. We find that the
linear model significantly over-predicts load at high temperature
hours, which increases the modeled probability of outages relative
to the nonparametric, additive model (Fig. A.5).

In our regressions, we hold each plant's forced outage rate
(EFORd) constant throughout the year. Finally, we test the effects
on LOLE of EFORd being sensitive to ambient temperature, with
plants being 50% less likely to be forced offline during summer the
warmest 6 months (April–September) and 50% more likely to be
forced offline in the coolest 6 months (October–March).

3.5. Correlated failures

We find that natural gas supply disruptions have the potential
to increase the risk of a supply shortage, assuming such outages



Fig. 12. Sensitivity of LOLE expected value to forced outage rate (EFORd).

Fig. 13. Sensitivity of unserved energy to regulatory actions that force all PJM
nuclear generators offline simultaneously for six months. Evaluated at 15.5% IRM.

Fig. A.1. Equivalent availability factor, PJM generators, 2010 (Bresler, 2012).

Fig. A.2. In-sample and out-of-sample residuals for PJM, linear model. Residuals
are large at high temperature days.

Fig. A.3. In-sample and out-of-sample residuals for PJM, non-linear model. The
model is more accurate at predicting load during high temperature days than the
linear model.

Fig. A.4. Difference in linear and nonlinear model fits, when predicting load out-of-
sample.
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force a large percentage of PJM’s gas generators offline at once. If a
supply disruption that forces all of PJM's gas generators offline
were to occur on average once every fifth year, the expected UE
would double (Fig. 11). Such supply disruptions can significantly
increase the maximum size of supply shortages (Fig. A.9). Supply
shortages that occur only during winter months do not have a
significant effect on reliability.

We find that winter resource adequacy risks may be un-
derstated if plant reliability varies seasonally. If plant outage rates
were 50% higher than baseline in winter months and 50% lower in
summer months, system LOLE would more than double (Fig. 12).
However, our gas supply shortage analysis shows that winter gas
supply disruptions alone do not significantly affect resource ade-
quacy. As occurred during the 2014 Polar Vortex, mechanical and
fuel supply issues at coal and nuclear generators during extremely
cold days are also a significant contributor to winter resource
adequacy issues.

We find that nuclear power supply disruptions also have the
potential to increase the risk of a supply shortage. The likelihood
of a regulatory action that forces all PJM nuclear generators offline
simultaneously is unknown. However, we find that if such an ac-
tion were to occur once every 50 years and force all nuclear



Fig. A.5. Calculated LOLE for linear and nonlinear models.

Fig. A.6. In-sample residuals, by month.

Fig. A.7. Autocorrelation of in-sample residuals.

Fig. A.8. Autocorrelation function, average adjusted daily temperature. Data is for
years 1949–2010, except 1966–1972.

Fig. A.9. Distribution of outage size, in terms of unserved energy. Shown are both
scenario in which outages are independent, and a scenario in which a natural gas
supply shortage occurs on average once per year, forcing all gas generators offline
at once. Assumed reserve margin is 15.5%.

Table A.1
Accuracy statistics of the load forecast model, both training error (2000–2009) and
test prediction error (2010).

Training,
1990–2009

Test, 2010

PJM Region RMSE [MW] NRMSE [%] RMSE
[MW]

NRMSE [%]

PJM Classic 1690 4.0 1800 4.5
AEP 790 5.2 910 6.7
Allegheny Energy 300 5.3 330 6.2
Dayton Power & Light 130 4.7 140 6.1
Dominion Virginia 640 3.3 760 5.8
Duquesne Light Co 80 4.1 90 5.2
Exelon – Common-
wealth Edison

930 5.6 1000 6.9
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generators offline for an average of 6 months, expected UE would
quadruple (Fig. 13).
Rockland Energy 20 4.2 20 5.1
PJM total 3510 3.5 3840 4.3
4. Discussion

Using our probabilistic regression method, we find the 2010
reserve margin target of 15.5% was sufficient to meet the man-
dated 0.1 LOLE standard. PJM procured 7 GW more capacity than
needed to meet the 15.5% target, making the realized reserve
margin 20.5%. By procuring more capacity than needed, PJM met
the 0.1 LOLE standard with 90% confidence. This is due to PJM's
policy to procure more capacity than needed if the capacity can be
procured at a cost less than the net cost of new entry of a natural
gas combustion turbine (�$270/MW-day) (PJM, 2008; Spees et al.,
2011).

Switching from the 0.1 LOLE standard to either the 2.4 LOLH or
0.001% UE standard would have reduced PJM's 20.5% reserve
margin in 2010. A 13% reserve margin would have been sufficient
to meet the 0.001% UE standard or the 2.4 LOLH standard with 90%
confidence. This represents an 11 GW reduction in capacity



Table A.2
Detailed regression results for the PJM Classic region.

Variable Estimate Std. Error t Value Significance Notes

(Intercept) 1.77E�01 2.81E�02 6.286 ***

isTue 1.07E�02 6.80E�04 15.694 ***

isWed 1.39E�02 6.81E�04 20.444 ***

isThu 1.46E�02 6.84E�04 21.289 ***

isFri 1.66E�03 6.89E�04 2.409 *

isSat �8.54E�02 6.83E�04 �125.053 ***

isSun �1.15E�01 6.84E�04 �168.839 ***

isMLK �1.08E�02 3.51E�03 �3.066 **

isPresidentsDay 3.33E�03 3.54E�03 0.942
isGoodFriday �5.21E�02 3.49E�03 �14.962 ***

isMemorialDay �1.01E�01 4.26E�03 �23.752 ***

isMemorialDayWeekend �2.88E�02 2.71E�03 �10.602 ***

isJuly4 �1.14E�01 3.56E�03 �31.962 ***

isLaborDay �1.13E�01 4.24E�03 �26.601 ***

isLaborDayWeekend �2.28E�02 2.61E�03 �8.707 ***

isChristmas �1.42E�01 4.63E�03 �30.571 ***

isXmasEveEve �2.11E�03 4.63E�03 �0.456 Dec 23
isChristmasEve �7.60E�02 4.63E�03 �16.405 *** Dec 24
isXMasWk �2.53E�02 3.49E�03 �7.249 *** Dec 26–30
XMasLights 1.35E�02 2.64E�03 5.116 *** Dec 4– 22
isThanksgiving �1.50E�01 3.78E�03 �39.591 ***

isThanksgivingFriday �1.01E�01 3.78E�03 �26.69 *** Day after Thanksgiving
isNewYearsDay �9.73E�02 3.60E�03 �27.021 ***

isNewYearsEve �5.09E�02 4.53E�03 �11.234 ***

isThanksgivingWeek �4.43E�03 1.94E�03 �2.28 * Mon–Sun, Thanksgiving week
isXmasDayAfter �4.67E�02 3.82E�03 �12.226 *** Dec 26
isFeb 5.69E�01 3.56E�02 15.97 ***

isH1 �1.27E�01 3.16E�03 �40.275 ***

isH2 �1.58E�01 3.16E�03 �49.848 ***

isH3 �1.71E�01 3.16E�03 �54.034 ***

isH4 �1.72E�01 3.16E�03 �54.256 ***

isH5 �1.52E�01 3.16E-03 �48.069 ***

isH6 �9.39E�02 3.16E�03 �29.672 ***

isH7 �2.94E�05 3.16E�03 �0.009
isH8 5.38E�02 3.16E�03 16.991 ***

isH9 6.71E�02 3.16E�03 21.204 ***

isH10 7.29E�02 3.16E�03 23.044 ***

isH11 7.32E�02 3.16E�03 23.147 ***

isH12 6.47E�02 3.16E�03 20.432 ***

isH13 5.10E�02 3.16E�03 16.111 ***

isH14 3.91E�02 3.16E�03 12.351 ***

isH15 2.65E�02 3.16E�03 8.384 ***

isH16 2.57E�02 3.16E�03 8.106 ***

isH17 5.68E�02 3.16E�03 17.949 ***

isH18 1.31E-01 3.16E�03 41.321 ***

isH19 1.45E�01 3.16E�03 45.811 ***

isH20 1.32E�01 3.16E�03 41.601 ***

isH21 1.10E�01 3.16E�03 34.847 ***

isH22 6.87E�02 3.16E�03 21.71 ***

isH23 3.11E�03 3.16E�03 0.984
isH24 �6.97E�02 3.16E�03 �22.036 ***

isMar 7.47E�01 3.43E�02 21.815 ***

isApr 6.20E�01 3.64E�02 17.054 ***

isMay 1.26E�02 4.36E�02 0.289
isJun �2.54Eþ00 1.17E�01 �21.658 ***

isJul 1.15Eþ00 6.10E�02 18.865 ***

isAug 7.86E�03 3.85E�02 0.204
isSep 1.17E�02 3.62E�02 0.323
isOct 3.58E�01 3.40E�02 10.54 ***

isNov 5.44E�01 3.85E�02 14.11 ***

isDec 1.59Eþ00 1.07E�01 14.806 ***

sun.hours 6.31E�04 4.97E�05 12.698 *** Daily daylight length, DC [mins]
isFeb:isH1 2.94E�02 4.52E�03 6.496 ***

isFeb:isH2 3.16E�02 4.52E�03 6.99 ***

isFeb:isH3 3.39E�02 4.52E�03 7.51 ***

isFeb:isH4 3.57E�02 4.52E�03 7.909 ***

isFeb:isH5 3.75E�02 4.52E�03 8.29 ***

isFeb:isH6 4.05E�02 4.52E�03 8.973 ***

isFeb:isH7 4.15E�02 4.52E�03 9.174 ***

isFeb:isH8 3.38E�02 4.52E�03 7.483 ***

isFeb:isH9 3.47E�02 4.52E�03 7.673 ***

isFeb:isH10 3.12E�02 4.52E-03 6.913 ***

isFeb:isH11 2.77E�02 4.52E�03 6.127 ***

isFeb:isH12 2.41E�02 4.52E�03 5.341 ***

isFeb:isH13 2.12E�02 4.52E�03 4.689 ***
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Table A.2 (continued )

Variable Estimate Std. Error t Value Significance Notes

isFeb:isH14 1.89E�02 4.52E�03 4.192 ***

isFeb:isH15 1.67E�02 4.52E�03 3.688 ***

isFeb:isH16 1.22E�02 4.52E�03 2.701 **

isFeb:isH17 �1.83E�03 4.52E�03 �0.404
isFeb:isH18 �2.08E�02 4.52E�03 �4.611 ***

isFeb:isH19 1.29E�02 4.52E�03 2.855 **

isFeb:isH20 1.84E�02 4.52E�03 4.063 ***

isFeb:isH21 2.00E�02 4.52E�03 4.416 ***

isFeb:isH22 2.13E�02 4.52E�03 4.708 ***

isFeb:isH23 2.30E�02 4.52E�03 5.092 ***

isFeb:isH24 2.52E�02 4.52E�03 5.587 ***

isH1:isMar 2.87E�02 4.40E�03 6.519 ***

isH2:isMar 2.72E�02 4.40E-03 6.178 ***

isH3:isMar 2.67E�02 4.41E�03 6.059 ***

isH4:isMar 2.72E�02 4.40E�03 6.195 ***

isH5:isMar 2.92E�02 4.40E�03 6.644 ***

isH6:isMar 3.71E�02 4.40E�03 8.44 ***

isH7:isMar 3.88E�02 4.40E-03 8.829 ***

isH8:isMar 4.11E�02 4.40E�03 9.36 ***

isH9:isMar 4.70E�02 4.40E�03 10.692 ***

isH10:isMar 4.78E�02 4.40E�03 10.868 ***

isH11:isMar 4.79E�02 4.40E�03 10.889 ***

isH12:isMar 4.72E�02 4.40E�03 10.747 ***

isH13:isMar 4.69E�02 4.40E�03 10.665 ***

isH14:isMar 4.65E�02 4.40E�03 10.569 ***

isH15:isMar 4.39E�02 4.40E�03 9.977 ***

isH16:isMar 3.62E�02 4.40E�03 8.224 ***

isH17:isMar 1.16E�02 4.40E�03 2.641 **

isH18:isMar �3.90E�02 4.40E�03 �8.862 ***

isH19:isMar �4.21E�03 4.40E�03 �0.957
isH20:isMar 2.87E�02 4.40E�03 6.519 ***

isH21:isMar 3.69E�02 4.40E�03 8.388 ***

isH22:isMar 3.58E�02 4.40E�03 8.134 ***

isH23:isMar 3.14E�02 4.40E�03 7.15 ***

isH24:isMar 2.68E�02 4.40E�03 6.097 ***

isH1:isApr 1.18E�02 4.46E�03 2.636 **

isH2:isApr �7.41E�04 4.46E�03 �0.166
isH3:isApr �1.02E�02 4.49E�03 �2.278 *

isH4:isApr �1.43E�02 4.46E�03 �3.198 **

isH5:isApr �1.66E�02 4.46E-03 �3.731 ***

isH6:isApr �9.39E�03 4.46E�03 �2.106 *

isH7:isApr �4.58E�03 4.46E�03 �1.026
isH8:isApr 9.25E�03 4.46E�03 2.074 *

isH9:isApr 3.23E�02 4.46E�03 7.236 ***

isH10:isApr 4.74E�02 4.46E�03 10.628 ***

isH11:isApr 6.00E�02 4.46E�03 13.452 ***

isH12:isApr 6.94E�02 4.46E�03 15.564 ***

isH13:isApr 7.70E�02 4.46E�03 17.276 ***

isH14:isApr 8.30E�02 4.46E�03 18.612 ***

isH15:isApr 8.46E�02 4.46E�03 18.97 ***

isH16:isApr 7.71E�02 4.46E�03 17.298 ***

isH17:isApr 4.44E�02 4.46E�03 9.96 ***

isH18:isApr �2.94E�02 4.46E�03 �6.601 ***

isH19:isApr �4.53E�02 4.46E�03 �10.158 ***

isH20:isApr �1.10E�02 4.46E�03 �2.472 *

isH21:isApr 4.67E�02 4.46E�03 10.472 ***

isH22:isApr 5.29E�02 4.46E�03 11.867 ***

isH23:isApr 4.13E�02 4.46E�03 9.253 ***

isH24:isApr 2.48E�02 4.46E�03 5.572 ***

isH1:isMay �2.65E�02 4.54E�03 �5.847 ***

isH2:isMay �4.77E�02 4.54E�03 �10.511 ***

isH3:isMay �6.38E�02 4.54E�03 �14.05 ***

isH4:isMay �7.67E�02 4.54E�03 �16.904 ***

isH5:isMay �8.53E�02 4.54E�03 �18.801 ***

isH6:isMay �8.81E�02 4.54E�03 �19.426 ***

isH7:isMay �9.21E�02 4.54E�03 �20.297 ***

isH8:isMay �6.09E�02 4.54E�03 �13.425 ***

isH9:isMay �2.11E�02 4.54E�03 �4.655 ***

isH10:isMay 1.01E�02 4.54E�03 2.224 *

isH11:isMay 3.70E�02 4.54E�03 8.158 ***

isH12:isMay 5.92E�02 4.54E�03 13.044 ***

isH13:isMay 7.75E�02 4.54E�03 17.077 ***

isH14:isMay 9.31E�02 4.54E�03 20.525 ***

isH15:isMay 1.04E�01 4.54E�03 22.816 ***

isH16:isMay 1.03E�01 4.54E�03 22.721 ***

isH17:isMay 7.34E�02 4.54E�03 16.182 ***
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Variable Estimate Std. Error t Value Significance Notes

isH18:isMay �4.80E�03 4.54E�03 �1.058
isH19:isMay �3.53E�02 4.54E�03 �7.788 ***

isH20:isMay �3.07E�02 4.54E�03 �6.76 ***

isH21:isMay 1.94E�02 4.54E�03 4.281 ***

isH22:isMay 4.21E�02 4.54E�03 9.276 ***

isH23:isMay 2.59E�02 4.54E�03 5.702 ***

isH24:isMay 1.33E�03 4.54E�03 0.293
isH1:isJun �1.35E�01 6.43E�03 �20.974 ***

isH2:isJun �1.65E�01 6.43E-03 �25.615 ***

isH3:isJun �1.90E�01 6.43E�03 �29.586 ***

isH4:isJun �2.12E�01 6.43E�03 �32.975 ***

isH5:isJun �2.30E�01 6.43E�03 �35.685 ***

isH6:isJun �2.51E�01 6.43E�03 �38.996 ***

isH7:isJun �2.69E�01 6.43E�03 �41.868 ***

isH8:isJun �2.30E�01 6.43E�03 �35.732 ***

isH9:isJun �1.70E�01 6.43E�03 �26.446 ***

isH10:isJun �1.20E�01 6.43E�03 �18.598 ***

isH11:isJun �7.49E�02 6.43E�03 �11.645 ***

isH12:isJun �3.60E�02 6.43E�03 �5.599 ***

isH13:isJun �3.36E�03 6.43E�03 �0.523
isH14:isJun 2.41E�02 6.43E�03 3.754 ***

isH15:isJun 4.57E�02 6.43E�03 7.101 ***

isH16:isJun 5.23E�02 6.43E�03 8.135 ***

isH17:isJun 2.46E�02 6.43E�03 3.832 ***

isH18:isJun �5.61E�02 6.43E�03 �8.722 ***

isH19:isJun �9.46E�02 6.43E�03 �14.705 ***

isH20:isJun �1.09E�01 6.43E�03 �16.954 ***

isH21:isJun �9.57E�02 6.43E�03 �14.886 ***

isH22:isJun �6.48E�02 6.43E�03 �10.077 ***

isH23:isJun �7.58E�02 6.43E�03 �11.785 ***

isH24:isJun �1.00E�01 6.43E�03 �15.619 ***

isH1:isJul 3.20E�02 4.87E�03 6.575 ***

isH2:isJul �2.08E�04 4.87E�03 �0.043
isH3:isJul �2.92E�02 4.87E�03 �5.989 ***

isH4:isJul �5.50E�02 4.87E�03 �11.277 ***

isH5:isJul �7.81E�02 4.87E�03 �16.024 ***

isH6:isJul �1.07E�01 4.87E�03 �21.898 ***

isH7:isJul �1.47E�01 4.87E�03 �30.174 ***

isH8:isJul �1.16E�01 4.87E�03 �23.745 ***

isH9:isJul �4.88E�02 4.87E�03 �10.005 ***

isH10:isJul 1.22E�02 4.87E�03 2.506 *

isH11:isJul 6.73E�02 4.87E�03 13.805 ***

isH12:isJul 1.15E�01 4.87E�03 23.651 ***

isH13:isJul 1.55E�01 4.87E�03 31.861 ***

isH14:isJul 1.88E�01 4.87E�03 38.54 ***

isH15:isJul 2.13E�01 4.87E�03 43.667 ***

isH16:isJul 2.22E�01 4.87E�03 45.468 ***

isH17:isJul 1.95E�01 4.87E�03 39.986 ***

isH18:isJul 1.15E�01 4.87E�03 23.547 ***

isH19:isJul 7.52E�02 4.87E�03 15.427 ***

isH20:isJul 5.39E�02 4.87E�03 11.066 ***

isH21:isJul 5.97E�02 4.87E�03 12.257 ***

isH22:isJul 8.66E�02 4.87E�03 17.777 ***

isH23:isJul 8.02E�02 4.87E�03 16.449 ***

isH24:isJul 6.22E�02 4.87E�03 12.759 ***

isH1:isAug �1.64E�02 4.46E�03 �3.688 ***

isH2:isAug �4.53E�02 4.46E�03 �10.169 ***

isH3:isAug �7.26E�02 4.46E�03 �16.293 ***

isH4:isAug �9.68E�02 4.46E�03 �21.728 ***

isH5:isAug �1.18E�01 4.46E�03 �26.52 ***

isH6:isAug �1.39E�01 4.46E�03 �31.26 ***

isH7:isAug �1.75E�01 4.46E�03 �39.168 ***

isH8:isAug �1.58E�01 4.46E�03 �35.389 ***

isH9:isAug �9.60E�02 4.46E�03 �21.55 ***

isH10:isAug �3.73E�02 4.46E�03 �8.371 ***

isH11:isAug 1.68E�02 4.46E�03 3.768 ***

isH12:isAug 6.48E�02 4.46E�03 14.53 ***

isH13:isAug 1.05E�01 4.46E�03 23.497 ***

isH14:isAug 1.38E�01 4.46E�03 30.883 ***

isH15:isAug 1.63E�01 4.46E�03 36.456 ***

isH16:isAug 1.70E�01 4.46E�03 38.225 ***

isH17:isAug 1.42E�01 4.46E�03 31.877 ***

isH18:isAug 6.01E�02 4.46E�03 13.488 ***

isH19:isAug 1.88E�02 4.46E�03 4.216 ***

isH20:isAug 3.67E�03 4.46E�03 0.824
isH21:isAug 2.65E�02 4.46E�03 5.954 ***
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isH22:isAug 3.20E�02 4.46E�03 7.176 ***

isH23:isAug 1.96E�02 4.46E�03 4.398 ***

isH24:isAug 2.70E�03 4.46E�03 0.605
isH1:isSep �2.98E�02 4.46E�03 �6.696 ***

isH2:isSep �5.31E�02 4.46E�03 �11.917 ***

isH3:isSep �7.32E�02 4.46E�03 �16.425 ***

isH4:isSep �9.03E�02 4.46E�03 �20.256 ***

isH5:isSep �1.04E�01 4.46E�03 �23.34 ***

isH6:isSep �1.09E�01 4.46E�03 �24.482 ***

isH7:isSep �1.07E�01 4.46E�03 �23.93 ***

isH8:isSep �1.01E�01 4.46E�03 �22.575 ***

isH9:isSep �5.78E�02 4.46E�03 �12.966 ***

isH10:isSep �1.44E�02 4.46E�03 �3.23 **

isH11:isSep 2.45E�02 4.46E�03 5.495 ***

isH12:isSep 5.76E�02 4.46E�03 12.923 ***

isH13:isSep 8.66E�02 4.46E�03 19.439 ***

isH14:isSep 1.12E�01 4.46E�03 25.06 ***

isH15:isSep 1.30E�01 4.46E�03 29.233 ***

isH16:isSep 1.35E�01 4.46E�03 30.333 ***

isH17:isSep 1.07E�01 4.46E�03 23.973 ***

isH18:isSep 2.60E�02 4.46E�03 5.827 ***

isH19:isSep �6.25E�03 4.46E�03 �1.402
isH20:isSep 2.16E�02 4.46E�03 4.85 ***

isH21:isSep 3.75E�02 4.46E�03 8.426 ***

isH22:isSep 2.60E�02 4.46E�03 5.833 ***

isH23:isSep 6.89E�03 4.46E�03 1.546
isH24:isSep �1.38E�02 4.46E�03 �3.092 **

isH1:isOct �1.58E�02 4.39E�03 �3.603 ***

isH2:isOct �3.01E�02 4.37E�03 �6.88 ***

isH3:isOct �4.09E�02 4.39E�03 �9.321 ***

isH4:isOct �4.90E�02 4.39E�03 �11.16 ***

isH5:isOct �5.29E�02 4.39E�03 �12.041 ***

isH6:isOct �4.45E�02 4.39E�03 �10.139 ***

isH7:isOct �2.13E�02 4.39E�03 �4.856 ***

isH8:isOct �7.67E�03 4.39E�03 �1.747 .
isH9:isOct 1.05E�02 4.39E�03 2.385 *

isH10:isOct 2.83E�02 4.39E�03 6.433 ***

isH11:isOct 4.42E�02 4.39E�03 10.054 ***

isH12:isOct 5.69E�02 4.39E�03 12.957 ***

isH13:isOct 6.84E�02 4.39E�03 15.579 ***

isH14:isOct 7.81E�02 4.39E�03 17.787 ***

isH15:isOct 8.38E�02 4.39E�03 19.08 ***

isH16:isOct 8.03E�02 4.39E�03 18.285 ***

isH17:isOct 5.32E�02 4.39E�03 12.111 ***

isH18:isOct �9.08E�03 4.39E�03 �2.068 *

isH19:isOct 6.64E�03 4.39E�03 1.512
isH20:isOct 3.95E�02 4.39E�03 9 ***

isH21:isOct 3.66E�02 4.39E�03 8.328 ***

isH22:isOct 2.86E�02 4.39E�03 6.518 ***

isH23:isOct 1.45E�02 4.39E�03 3.31 ***

isH24:isOct �1.47E�04 4.39E�03 �0.034
isH1:isNov 2.60E�03 4.49E�03 0.58
isH2:isNov �4.65E�03 4.48E�03 �1.038
isH3:isNov �8.86E�03 4.49E�03 �1.974 *

isH4:isNov �1.12E�02 4.49E�03 �2.498 *

isH5:isNov �9.79E�03 4.49E�03 �2.182 *

isH6:isNov �1.49E�03 4.49E�03 �0.332
isH7:isNov 5.94E�03 4.49E�03 1.322
isH8:isNov 7.00E�03 4.49E�03 1.56
isH9:isNov 2.09E�02 4.49E�03 4.651 ***

isH10:isNov 2.85E�02 4.49E�03 6.359 ***

isH11:isNov 3.29E�02 4.49E�03 7.317 ***

isH12:isNov 3.69E�02 4.49E�03 8.21 ***

isH13:isNov 4.02E�02 4.49E�03 8.947 ***

isH14:isNov 4.31E�02 4.49E�03 9.593 ***

isH15:isNov 4.51E�02 4.49E�03 10.055 ***

isH16:isNov 4.61E�02 4.49E�03 10.274 ***

isH17:isNov 5.34E�02 4.49E�03 11.902 ***

isH18:isNov 5.26E�02 4.49E�03 11.725 ***

isH19:isNov 3.96E�02 4.49E�03 8.821 ***

isH20:isNov 3.56E�02 4.49E�03 7.937 ***

isH21:isNov 3.16E�02 4.49E�03 7.04 ***

isH22:isNov 2.63E�02 4.49E�03 5.866 ***

isH23:isNov 1.96E�02 4.49E�03 4.367 ***

isH24:isNov 1.17E�02 4.49E�03 2.606 **

isH1:isDec 6.70E�02 6.10E�03 10.989 ***
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isH2:isDec 5.89E�02 6.10E�03 9.648 ***

isH3:isDec 5.42E�02 6.10E�03 8.888 ***

isH4:isDec 5.22E�02 6.10E�03 8.562 ***

isH5:isDec 5.19E�02 6.10E�03 8.504 ***

isH6:isDec 5.17E�02 6.10E�03 8.474 ***

isH7:isDec 4.89E�02 6.10E�03 8.014 ***

isH8:isDec 4.92E�02 6.10E�03 8.062 ***

isH9:isDec 5.66E�02 6.10E-03 9.27 ***

isH10:isDec 5.94E�02 6.10E�03 9.731 ***

isH11:isDec 5.78E�02 6.10E�03 9.474 ***

isH12:isDec 5.65E�02 6.10E�03 9.261 ***

isH13:isDec 5.60E�02 6.10E�03 9.173 ***

isH14:isDec 5.63E�02 6.10E�03 9.236 ***

isH15:isDec 5.87E�02 6.10E�03 9.629 ***

isH16:isDec 6.36E�02 6.10E�03 10.424 ***

isH17:isDec 8.52E�02 6.10E�03 13.959 ***

isH18:isDec 9.40E�02 6.10E�03 15.415 ***

isH19:isDec 8.29E�02 6.10E�03 13.583 ***

isH20:isDec 8.25E�02 6.10E�03 13.517 ***

isH21:isDec 8.52E�02 6.10E�03 13.966 ***

isH22:isDec 8.88E�02 6.10E�03 14.562 ***

isH23:isDec 8.88E�02 6.10E�03 14.552 ***

isH24:isDec 8.01E�02 6.10E�03 13.127 ***

isFeb:sun.hours �9.87E�04 6.10E�05 �16.182 ***

isMar:sun.hours �1.26E�03 5.75E�05 �21.895 ***

isApr:sun.hours �1.08E�03 5.84E�05 �18.453 ***

isMay:sun.hours �3.01E�04 6.44E�05 �4.669 ***

isJun:sun.hours 2.72E�03 1.42E�04 19.115 ***

isJul:sun.hours �1.60E�03 8.11E�05 �19.676 ***

isAug:sun.hours �2.11E�04 5.98E�05 �3.536 ***

isSep:sun.hours �2.08E�04 5.90E�05 �3.519 ***

isOct:sun.hours �7.26E�04 5.78E�05 �12.549 ***

isNov:sun.hours �1.03E�03 6.69E�05 �15.318 ***

isDec:sun.hours �2.88E�03 1.92E�04 �14.989 ***

Note: Dependent variable is residuals from the long-term trend regression (see main paper, step 1). Significance codes: ‘ � ‘ (Po1), ‘.’(Po0.1).
*** (Po0.001).
** (Po0.01).
* (Po0.05).

Table A.3
Temperature calculations.

Tmax max Tadj i D

Tmin min Tadj i D A.1

D i

D i

= ∀ ∈

= ∀ ∈ ( )

Tmax HDD max Tmax

Tmax CDD max Tmax

Tmin HDD max Tmin

Tmin CDD max Tmin

. 69 , 0

. 69, 0

. 45 , 0

. 45, 0 A.2

D

D

D

D

= ( – )
= ( − )
= ( – )
= ( – ) ( )

i¼hour of the day
D¼day of the year
Tadji¼hourly adjusted temperature
TmaxD, TminD¼daily max and min temperature [°F]
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procurement, while still maintaining levels of reliability accepted
by other systems. If PJM were to switch to either standard, the
11 GW of coal capacity “at high risk” of retirement could be retired
without needing to be replaced. In addition, we find that a reserve
margin of 13–15% minimizes total system costs.

PJM's resource adequacy modeling assumes that generator
outages are independent. We find that correlated outages among
generators could significantly increase outage risk, and cause PJM
to underestimate this risk. Evidence suggests that correlated
outages do occur with some regularity; winter storms in January
2014 led to 19 GW of natural gas plants and 21 GW of other ca-
pacity simultaneously experiencing forced outages (PJM, 2014c).
Although winter supply risks have recently been the focus of much
attention, we demonstrate that other types of correlated failures
may also pose risks. For example, the risk of a forced shutdown of
all nuclear generators, while unlikely, could significantly affect
reliability.

System operators should be aware that the risk posed by supply
shortages is primarily due to extremely severe, but infrequent
outages. Our simulations show that the largest 10% of supply
shortages are responsible for 50% of unserved energy. Taking into
account the possibility of correlated generator outages further
exacerbates this risk. The risk of very large outages increases at
low reserve margins, suggesting that PJM's policy of over-procur-
ing capacity may be justified.
5. Conclusions and policy implications

Improved understanding of supply shortage risks is increas-
ingly important in today's era of declining reserve margins and
coal retirements. Several ISOs, including PJM, have begun to take
steps to address these concerns. PJM recently submitted a proposal
to the Federal Energy Regulatory Commission (FERC) to establish a
Capacity Performance product (PJM, 2014d) that would provide
stronger incentives for generators to be available during peak-
demand periods.
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Resource adequacy modeling is difficult due to the inherent
uncertainty intohe likelihood and magnitude of supply shortages.
The difficult of resource adequacy modeling is further complicated
by the myriad of metrics with which reliability can be measured.
NERC recommends that system operators adopt a reliability metric
based on unserved energy. We agree. The LOLE metric is flawed, in
that it measures only the probability of an outage occurring and
ignores both the severity and duration of outages. Our modeling
shows that the severity and duration of outage events vary greatly
(Table 9), undermining the usefulness of the LOLE metric. Our
results also indicate that the 0.1 LOLE standard results in higher
reserve margins than other commonly used metrics, such as
0.001% UE or 2.4 LOLH. In 2010, switching from the LOLE standard
to a UE or LOLH standard would have allowed PJM to reduce re-
serve margins from 20.5% to 13%, while maintaining current risk
preferences and levels of reliability accepted by other systems.
Because supply shortages could cause political fallout both re-
gionally and for system operators, we recommend that ISOs work
with NERC and stakeholders to identify both the appropriate UE
target and the risk tolerance of PJM participants.

Basing capacity decisions on traditional reliability standards
ignores the cost effectiveness of carrying excess capacity. Achiev-
ing a very high reliability standard may be possible, but extremely
costly. Recently, system operators such as ERCOT have begun to
incorporate the cost effectiveness metrics into decision making
processes (Newell et al., 2014). A study commissioned by the
Public Utility Commission of Texas found that the economically
optimal reserve margin in the ERCOT system is 10.2% (Newell et al.,
2014). This is lower than the 14.1% reserve margin the study found
was needed to meet the 0.1 LOLE study, but higher than the 9.1%
reserve margin needed to meet 2.4 LOLH standard and the 9.4%
reserve margin needed to meet the 0.001% UE standard. We find
that a reserve margin of 13–15% would have minimized total long-
term system costs in PJM.

System planners should consider the risks posed by events that
can cause correlated outages among generators. Many potential
systemic risks exist, including extreme weather, natural disasters,
and unforeseeable and sudden regulatory actions that force many
plants offline (a risk that was exposed when the Japanese nuclear
fleet was shutdown after the Fukushima disaster). Resource ade-
quacy models typically assume plant failures are uncorrelated
with one another and therefore ignore systemic risks. We de-
monstrate that systemic risks may pose a real threat to resource
adequacy.

We recommend four specific improvements to the resource
adequacy modeling and decision making process.

First, our modeling supports NERC's recommendation that
systems move from a LOLE metric of resource adequacy to the
unserved energy (UE) metric, which more accurately quantifies
the risks of supply shortages. We show that the 0.1 LOLE standard
is also conservative compared to the 0.001% UE standard. We find
that in 2010 PJM could have reduced reserve margins by 7.5%, or
11 GW, and achieved the 0.001% UE standard used by other sys-
tems. System operators should work with stakeholders and NERC
to identify what unserved energy targets are appropriate.

Second, we recommend that system operators consider the
system cost consequences of resource adequacy decisions. We
recommend that PJM and other system operators supplement
their resource adequacy modeling and decision making by calcu-
lating the economically optimal reserve margin that minimizes
total system costs. The results of this analysis should be conveyed
to stakeholders and inform capacity procurement decisions
alongside traditional reliability metrics.

Third, we recommend further research into systemic risks that
can cause many generators to fail at the same time, especially low
probability, high impacts risks that are difficult to quantify with
retrospective analyses. Our analysis suggests such systemic risks
have the potential to negatively affect reliability. These risks are
not accounted for in traditional system planning. Additional re-
search is needed into the potential causes of correlated outages,
their likelihood, and potential severity. If systemic risks are found
to be significant when added to resource adequacy models, sys-
tems may need to increase reserve margins.

Finally, the resource adequacy modeling and decision making
process should be made more transparent. The methods used
should be made publically available. To the extent possible, data
and results should also be made publically available. Models
should be run under a variety of scenarios and assumptions to test
for robustness. The limitations of the modeling should be ac-
knowledged and conveyed to stakeholders and the public.
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Appendix A

See Appendix Figs. A.1–A.9 and Tables A.1–A.3.

Detailed regression results

Table A.2 provides detailed regression results for the PJM
Classic region. We find that the significant results have the ex-
pected sign in most cases. For example, signs are negative for
holidays, reflecting that load ar

e lower on these days. Signs are also negative for low-load
hours during the night and positive for high-load hours during the
day and evening.

Linear model results

We use a non-parametric, additive model to account for the
relationship between adjusted average daily temperature and
hourly load (see Section 2 – Step 2). However, we also investigated
the potential of using a linear model to account for the relation-
ship. As discussed below, we found that using a linear fit worked
well for the majority of hours, but considerably over-predicted
loads during high temperature days. This over prediction led to the
linear model over-estimating the probability of a supply shortage.

The linear model we used in the second step considered the
maximum and minimum daily temperature, as shown in Eq. (A.1).
We divided days into heating degree days (HDD) and cooling de-
gree days (CDD), as is common in literature (A.2). The split
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temperature between HDD/CDD was set to minimize model error:
for Tmax terms, the temperature was 20.6 °C. For Tmin terms,
temperature was 7.2 °C. We then used a linear and quadratic term
for both HDD and CDD temperatures in the regression (A.3).

weekday hour month holidays T max

HDD Tmax CDD Tmin HDD Tmin CDD

Tmax HDD Tmax CDD Tmin HDD
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. . .
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